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Energy loss of a charged particle in a magnetized quantum plasma
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This paper investigates the stopping power of a weakly coupled magnetized plasma. The effect of the
Larmor rotation of the heavy charged test particle is carefully analyzed. The dielectric formalism is employed
to obtain a general expression for the stopping power. A quantum mechanical form of the random-phase
approximation dielectric function is used so that an abitrary cutoff procedure is not required. Simple analytical
expressions for the stopping power have been found for the cases of high and low projectile velocity of the test
particle. The dependence of the stopping power on the angle of incidence is studied. A comparison with
numerical solutions is given. It is found that in general a magnetic field reduces the stopping power of the
plasma at high velocities, while it increases the stopping power at low velocities.
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[. INTRODUCTION ered within the framework of the dielectric formalism. It was
found that the stopping power, i.e., the energy loss per unit
There have been a number of theoretical studies of the iolength of the projectile, and the dielectric function of the
beam stopping power of a plasma. Although some calculaplasmae(q, ) are related by the formula
tions of the stopping power in a magnetized plasma have
been presented in the early 1960s2] the topic has only
recently become of general inter¢8t-5]. Partly, this is due 1(ze\? o
:U ? qugn(w)lm -

2

to the fact that strong magnetic fields are now experimentally
available[6]. The experimental motivation for this investiga-
tion also comes from the heavy-ion fusion research, in which
the experiments are usually carried out in the presence of @heren(w)=(ef"“—1)"!is the Bose facton is the veloc-
magnetic field. We also mention the importance of this topidty, and Ze is the charge of the test particle. Here the fre-
in connection with the efforts to model the atmosphere ofquencyzw=E(p’)—E(p) is given by the energy transfer of
magnetized white dwarfs and magnetized neutron stars, ofive scattering of a particle from an initial state with energy
the surface of which the magnetic field can be as high ag(p) to a final state with energ§(p’), and a momentum
10°- 10" kG. transfer ofzg=p’ —p. It should be stressed that E@) is
Some progress has been recently made in the calculatiopalid for the case of weak coupling between the projectile
of the thermodynamic properties of quantized magnetize@énd the plasma, given by the parametgsZe?/Au, <1
plasmas. The low-density magnetized plasma system hgse), whereu, is the electron-test particle relative velocity.
been tackled in the works of Coriid], Boose and Perd8],  Hence the dielectric formalism in linear response becomes
and of Steinberget al. [9]. The ground state energy of a exact in the limit of high test particle velocities. The aim of
degenerate strongly magnetized plasma has been investhis work is to study the influence of an external magnetic
gated by Skudlarski and Vignal@0] and by Steinberg and field on the energy loss rate of an ion moving through a
Ortner[11]. The plasma diagnostics on the basis of schedguantum plasma. In doing so we analyze the effect of the
uled experiments investigating the interaction of a laser or & armor rotation of the test particle on the stopping power.
particle beam with a magnetized plasma require the knowl- Qur calculations are based on the description of the
edge of the dielectric function. The dielectric tensor of aplasma in the random-phase approximati®PA) and are
magnetized coupled plasma has been studied in recent worligerefore restricted to the weak-coupling limit of the inter-
[12-14. particle correlationgd17]. In order to describe a strongly
In this paper we study the stopping power of a chargedoupled plasma system one must go beyond the RPA. This
projectile passing a magnetized plasma. In order to simplifynmay be achieved by explicitly taking into account static and
the calculations we focus on the case of a weakly coupledynamic local-field correctiondFC’s) [18] in the dielectric
magnetized plasma. A weakly coupled plasma is charactefunction. Alternatively one may employ the method of fre-
ized by a small coupling parametEr which is given by quency moment$19]. Other approaches also take into ac-
count a nonlinear coupling between the projectile and the
(1) plasma. They start from a quantum kinetic equation using a
T-matrix approximation for the correlation effects between
the test particle and the plasii20,21]. All these approaches
whered=(3/4mn)? is the mean distance between the par-(except the investigations based on the method of moments
ticles andT is the temperature of the plasma. Since the pio{12,14)) are worked out only for nonmagnetized plasmas. It
neering work of Lindhard15], the theory of the stopping is difficult to generalize them to the case of a magnetized
power of a(weakly or strongly couplédplasma was consid- plasma. Therefore they go beyond the scope of this work.

o
€(q,0))’
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However, it has been realized that the RPA serves as agrgy spectrum of the test particle can then be written as
appropriate starting point for the calculation of the stopping
power.

The energy loss rate of a test particle in a magnetized
plasma has been recently investigated in RE3s:5] (and
references thereinin their investigations the motion of the The corresponding eigenstates are labeled by
test particle as well as the plasma were treated classically= (n,k ,k,,o), whereo is the spin variable. In a first ap-
Here, we use a quantum mechanical descripiRiPA) of the  proximation, if the interaction of the test particle and the
beam-particle interaction rather than a classical dielectriplasma is sufficiently weak, the inelastic scattering rate of a
tensor. Unlike its classical counterpart the RPA dielectricparticle from the initial stateN=(n,k, k,,o) to the final
function guarantees the convergence of the integral for shortate N’=(n’,k)’,,k; ,o') can be calculated from Fermi's
range interactions and avoids some arbitrary cutoff procegolden rule. We find for the scattering rate
dure. Furthermore, we assume that the electrons give the

h2k2
+ 5.
2M

1+o
En,kz,a: hQel n+ —

()

main contribution to the stopping power. dq [4mwzZe? 220

In this paper we obtain numerical and analytical results R(N—N" @)= f 37| 77Sqw)
for the energy loss of a fast moving particle in a magnetized (2m) q ﬁ
plasma. In Sec. Il we specify the parameters of the plasma X(N'|€ NV 2 poE ) —E ,
under consideration and briefly outline the formulation of the kg ot Tk o
stopping power in the dielectric formalism. In Sec. Il we (4)

obtain expressions for the dielectric function of a magnetized
plasma of all degeneracies. We also give simplified resultgthere we have introduced the dynamical charge-charge
for the limiting case of a nondegenerate plasma. Analyticabtructure facto§(q, ) of the plasma. The Fourier transform
results for the stopping power in the limit of high and low of the wave functions are given (4]
velocities are derived in Sec. IV. The Larmor rotation of the
test particle is taken into account. Finally, in Sec. V, we R T

. X (N’|e"IIN)=F
present numerical results for the energy loss rate for various
parameters of the plasma and compare these results to the
asymptotic results derived in Sec. IV. where

qtlg
T) Sk k,+a,k] k,+9,90,071 (5

1/2
X" =2 exy —x/2)LT T"(x) (n<n’),

&

II. BASIC THEORETICAL TREATMENT Fan(X)=

The plasma under consideration is subject to an external
constant magnetic field, which is considered to be parallel to F o (x)=(—1)""E., n>n’ 6
the z-direction B=(0,0B). It may be specified by its tem- () =(—1) nrn(X) ), ©

peratureT and by the plasma frequenay,=y4mnes/m, .4 LM (x) are the generalized Laguerre polynomiab].

wheren_ IS t_he electron den3|_ty. The influence of the ions ONThe classical motion of the test particle allows us to consider
the projectile energy loss will be neglected throu_ghout th'sthe matrix elements in the limit —0, with the result(see
paper. The motion of the electrons are characterized by th&lso[z 4)) ’

cyclotron frequencyw.=eB/mc or the magnetic lengthg
=hcl/eB, wheremis the electron mass. qf|§

We consider a test particle of malsksand chargeZe that an,(7> —Jn-n(q,a), 7
moves with velocity components=(u,,u,) in a magne-
tized plasma. The incident angle of the motion of the particlgyin 5= u, /Q. andJ,(x) being the Bessel function of order
with respect to the magnetic field is denoted dyso that  , ysing this relation and Eq4) it follows that
u,=ucosa andu, =usina. We assume a mass of the par-

ticle M>m such that a classical description of its motion is dq [4nzé? 2o
applicable. The particle moves on circular orbits perpendicu- R(N—N',w)= J —(2 £ 2 | 72 S(9, )
™ q

lar to the field with a frequencyl.=ZeB/Mc, while the
motion parallel to the field is not influenced by the field. % J2 ) )

Let us now derive a general expression for the stopping o -n(@.8) 5ky'ky+qy5kz ket a,00,07
power of a particle in a magnetized plasma. In doing so, we % S(E “E 5 8
essentially follow the method that was developed in Ref. (Entyo™Bniig o w). ®
[22]. We first consider the case where the incident particl . .
must be described quantum mechanically, and from that w Ze ji?eirprzga:usrfgliigtﬁrza fac)tﬁ;(fq&c]ug C?;Szzogta'sgi?] frct);r;
extract an equation for the stopping power in which the MO~ “tuation dissi ationethqég)re[ﬁ!e] ong finds » Y 9
tion of the test particle can be described classically, i.e., ir{ P

the limit #—0. In quantum mechanics the motion perpen- - 1
dicular to the magnetic field is quantized with the energy S(q,0)= Ln(w)lm( — _) 9
eigenvalues given b¥, =4 Q. (n+1/2) [23]. The full en- 47%€? €(q,0)
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The energy transfe o may be determined from larization function is determined solely by a collisionless,
i.e., noninteracting, Fermi system in a magnetic field, and it

ng can be written in the form
hw=hp,u,+ oM +shQ, (10
dk,
with s=n’—n andp,=k,—k,. Since we assume a classical T(q,@)= ; j (27l )2
motion of the test particle, we can neglect the second term in
this equation. The energy loss rate is given by a sum over all f(En,kZ]U)— f(En,,szqu,U)
final states: X Z —
nn' ky k) hotEnk o~ Enk+q,0T10
dE .
EZE fwR(N—=N’, o). (11) x|(n' k) k,+0q,,00€ In .k, ko) |2 (14)
N/

) ) ) Here the summation is carried out over all Landau levels
In the next step we split the integral in©0>0 andw<0 ' and spin variables.. The arguments of the Fermi-Dirac

parts and make use of the relatio{w)+n(-w)=—1.  fynctionf(E,, ,) are given by the eigenvalues of the free
With that we obtain for the stopping power in a magnetic z

field particles:
g 1+o) 72K
:_E_E En’kZ’U—ﬁwc n+ T)+ om (15)
u dt
9722 B B LSO The polarization function.in a magnetic field in RI?A! ie.,
_<£'€ D f da, q,92(q a)f dg qzu, T Siic Eq. (14), has been extensively studied by Hor{i] within
U == Jo oS L e 2 qf+q§ the Green'’s function method. He used a closed form of the
polarization function, avoiding unwieldly summations over
<iml — 1 >( L+sQ), (12) Landau eigenstates, and derived analytical results for differ-
€(0,,9, ,0,U,+SQ,) QzYz ¢/ ent limiting cases. Since we are interested in the general case

of arbitrary degeneracy, our starting point is the single par-
where O (w) is the well-known step function. Essentially, ticle wave function of a particle moving in a magnetic field.
this equation describes the energy loss of a classical particfehe results for the matrix elements have already been given
moving in a magnetic field and passing a magnetized quarin the previous sectiofEq. (5)].
tum plasma. Alternatively, one can derive Efj2) from the In the next step we separdiE(q,») into real and imagi-
linearized Vlasov equation, where the self-consistent electrorary parts. This may be accomplished by using the identity
static potential is determined by Poisson’s equation. Since
this is a classical derivation, the plasma dielectric function in 1 _
Eqg.(12) is given by its classical representation. This program w—wo+i0* =P w—
was first carried out by Rostokd27]. Additionally, one
must introduce a momentum cutoff to avoid the divergenceye first find an expression for the imaginary part of the
of the integral at small distances. In contrast to that, thgesponse function. Thé-function allows us to perform the

description of the projectile plasma interaction used in thi&z-integration in Eq(14), and we readily obtain
work leads to a quantum expression for the dielectric func-

tion and avoids the cutoff procedure at small distances, 1 m

which is inherent in the classical treatment. ImIl(q,0)=—= ——
47TlB h |QZ|

—imé(w— wy). (16)

Ill. DIELECTRIC FUNCTION

. . . . . . XE 2 [f(En,m/ﬁqz(w+wc(nfn’)—ﬁq§/2m),o)
In this section we obtain expressions for the dielectric o nn’

function in random-phase approximation, including both

. . . _f E ’ —n'
thermal and quantum effects. We first introduce the polariza- (En' it (0t oi(n-n") - naZizm),o)]

tion functionI1(qg,w) which is connected to the dielectric q212
function by the following expression: Xan,( 1_28 17
2
€(g,w)=1+ e (g, ). (13 This resultis valid at arbitrary degeneracy of the plasma and
q? may serve as a starting point for numerical analysis. In the

next section we will find a simplified expression for the di-
The polarization function describes the response of thelectric function in the limit of small degeneracy. Further-
plasma to a test charge. In general, the response of the sysore, we present an expression for the real part of the re-
tem is calculated within a perturbation theory. The lowestsponse function, which is obtained by using the Kramers-
order contribution is the RPA. In this approximation the po-Kronig relation[26]. The result reads as
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1 m As expected, the zero field res(iz9] for Im €(q,w) is re-
Rell(q,0)=— — covered along the magnetic field (=0), where the sum in
4mlg h7lq, Eq. (22) is reduced to the term=0.

Following the same steps described above we have also
XE 2 [9(En minig (w+ o (n—n)—ha2i2m).o) computed the real part af(q,w), with the result

o n,n’
~9(En/ miag,(o+ w(n—n')+ig2izm), o) ] mwf) m 2 = .
2|2 Ree(qw)=1+-—"{ o= 2> (e ™d(s)
2 (s fia?a,] N
xF2 | ===, (18)
2 22 22
—e™d(s_))ex —QL—chothx I ails
where the functiorg(E,, y(.),,) is defined by - 2 "\ 2 sinhx/’
23
*  HEnxwr.o) (
9(Enx(eyo) =P f do'—X0C (19
—o w—w

with s. =\mpB29%(w—nw .+ #fq2/2m) and ®(s) is the
and the integral is to be understood in the sense of a Cauctyfasma dispersion function given by
principal value. It is useful to establish the relation between
the chemical potentigh= un+ Nz w, and the particle den-
sity n, given by

z

2
1 e e
<1>(s)=—Pf dz——=me S Erfi(s). (24
x 1 & Vo J-= 57z

=T > oy B, (20)

N=0

) Again, we observe the zero field resul] for Ree(q, )
where the sum in Eq20) extends over all Landau levelé in the limit q, —0.

and the standard Fermi integrdis(«) are defined by Equations(17), (18), (22), and(23) form the basis for the
, numerical analysis of the energy loss rate. These results are
F(a)= dex X _ 21) presented in Sec. V and are compared with the analytical
Y 0o e Y] results derived in the next section.

In the next section we give simplified results for the dielec-
tric funciton of a nondegenerate plasma. IV. ASYMPTOTIC RESULTS

High-temperature, low-density plasmas. We can now ob- . I .
tain expressions for the real and imaginary part of the dielec- W& now focus our attention on the derivation of analytical

tric function of a high-temperature and low-density plasma €Sults for the stopping power in limiting cases. We study the
These plasmas are characterized by the relatiogtoPpPing power in dependence on the velocity of the charged

nA%tanh§)/(2)=e“K"<1, where A=h/\27mkT, x paricle at _both low velocitiesy—0, and _high velocitiesy _
—fw /2kT, and u is the chemical potential for the plasma — 0, T_he |_nfluence of the Larmor rotation on the stopping
electrons. In this case the Fermi-Dirac distribution can bd®OWe' 'S discussed.

replaced by the Boltzmann distribution. Notice that a mag-
netic field increases the domain of classical behavedf

< 1) towards higher densities.

Our starting point for InI(q,w) is Eq.(17). The series Let us consider the situation when the projectile velocity
En, may be summed by using the representation of the m0d|ls much Iarger than the thermal VelOCity of the plasma elec-
fied Bessel functior y(x) in terms of the generalized La- trons. In this high-velocity limit the damping effects can be
guerre polynomials. After some lengthy calculations one arneglected and consequently the imaginary part of the inverse
rives at the following expression for the imaginary part of dielectric function can be described by a sharp loss of energy

A. High-velocity limit

the dielectric functior28]: at the plasma excitation frequenciesw,. These frequen-
cies should be chosen in such a way that the corresponding
2 12 = dielectric tensor satisfies the frequency sum rules. In order to
Moy, 2mm ! - : equ ! -
Im e(q,w)= > el simplify the calculation we will divide theg-integration into
f19°|qz| = a region of small momentum transfer, i.€<qmax and
2 2.2 large momentum transfer>q,ax and will use different ap-
M(w—Nwe)* #0; e BN .
xexd — + KT proximations for the energy loss function in each region.
2q§ 8m Clearly, the final result is independent of the particular

52 choice ofq,,a. For large distances, i.69<qnax, WE Can use
X sin ho e_qf|glzcothx| qils 22) the cold plasma approximation for the inverse dielectric
kT "\ 2 sinhx /" function, which is given by the expression
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| ( 1 )_'n' y s w_ 5 Zzezwg(l 2mu? . )
m ) —z(w B°) ol ol (w—w_) S= = n Fon |~ B, (30)
B 2w+ . 5(w_w+))’ (25) where the constarft(8) is given by
wW_—w_
1 (e o|B?—o|nw
with the plasma frequencies_ andw, given by f(ﬁ)_ﬂfo d“’\/|w(w_w1)(w_w2)(w_w3)|
w.=(1+p%)2+(1+ B%)?/4—p* cos 6,  (26) 1 (os 0| 2= w|nw

+— w
where ¢ denotes the angle between the wave vector and the 21 )0, N]o(@=01)(0=0)(0— ;)|
magnetic field. One can easily check that the inverse dielec- (31
tric function defined in Eq(25) satisfies the frequency sum
rules. Notice, that all frequencies are measured in units of thevith the characteristic frequencies determined by
plasma frequency,. We have also introduced a measure of

the electron cyclotron frequency, given |By= w./w,. The w1=(1+ B 2% (1+ B?)?l4— B?sirf a,wz=1+ B°.
approximation(25) describes a sharp loss of energy at the z (32)
plasma excitation frequencies.. . At small distances, i.e.,

3= Qmax, We can use This result is the generalization of Bethe’s expression for the

1 1 stopping power in the high-velocity limit and was first de-
_ _TL _ rived by Akhiezer[1]. The constantf(8) vanishes in the
Im( e(q,w)) 2 w[&(w @g) T 8@t wg)], (27) limit B—0, from which one retrieves the zero field result.
Akhiezer[1] also derived an analytical expression fgi3)
wherew, is obtained from the fourth frequency moment andat arbitrary incident angles and at strong magnetic figlds
reads aSa)é:(h/mep)zq4 [13]. These characteristic fre- =1, which reads
guencies may be calculated from the dielectric function at

high frequencies. Having introduced these general expres- 1+cog a 5. Si Sirt a
sions we may now proceed to analyze the slowing down of a ~ f(8)=——,——In(1+ %)+ —,—| 1+In——].
test particle passing a plasma for different incident angles (33

and physical situations.

_ o Two general results can be extracted out of this expression
1. Arbitrary direction and€.=0 concerning the influence of the magnetic field on the high-

In a first approach we neglect the curvature of the motiorv€locity stopping power for the zero curvature motion of the
of the incident particle, but consider its motion in arbitrary test particle. First, the stopping power of a plasma is reduced
direction. Let us briefly outline the steps leading to the final@s @ consequence of an increasing magnetic field strength.
result. Since we are interested in the high-velocity limit, weFurthermore, one must be careful by applying the high-
can start with the high-velocity approximatiot®5) and(27) velocity approximation in the infinite magnetic field case.
for the energy loss function. Considering first the large mo-The argument of the logarithmic term in EGO) may be
mentum part > 0,,.,,), We insert the high velocity approxi- approximated by B1u?/%(w}+ w2)"? which must be a large
mation in Eq.(2) and carry out all integrations. Additionally, quantity in order to make this derivation in logarithmic ac-
we neglect all terms that vanish as—% and obtain the curacy valid. Clearly, this contradicts the assumption of an

following expression: infinite magnetic field. The second point is that the high-
velocity stopping power is a monotonic function of the inci-
726202 | 2mu dent angle of the test particle, having its maximum at per-
= P dicular motion, i.e.q= /2, and its minimum at parallel
>INl . (280  pendicula , Leq=m7/2, p
u Am motion, i.e.,«=0. The limiting cases of parallel and perpen-

) dicular motion and the influence of the Larmor rotation of
Performing the same procedure for the small momentunghe test particle will be discussed in the next section.
part, a straightforward calculation will lead to

2. Parallel motion @=0)

2,2, 2
S= z'e wp(m(uqmax)_f(ﬁ)), (29) If the incident particle moves parallel to the magnetic
u? wp field, the stopping power will be independent of the curva-
ture of the motion of the test particle, i.e., 6f;.. Under
where again terms that vanish as>c are neglected. Com- these conditions only the ters®= 0 in Eq.(12) contributes to
bining both expressions the dp,,, terms cancel and we find the energy loss. Inserting Eq&5) and (27) into Eq. (12)
the following leading term for the stopping power at high and carrying out all integrations one arrives at an expression
velocities: which is obtained from the calculation of the previous sec-
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tion by settinga=0 in Egs.(30) and(31). The result, which  Again, we mention that the energy loss of a particle moving

is valid at arbitrary magnetic field, reads as perpendicular to the field is larger than for a particle moving
parallel to the field.
2.2 2 ) The second case deals with the more general situation
Z°e“wy, 2mu; . : o
= n ) (34)  Wwhere the Larmor rotation of the fast moving particle is
u? ﬁwp\/1+,6’2 taken into account. Since we are interested in the asymptotic

limit of high velocities it is sufficient to start with the
S-function approximatiofEgs.(25) and(27)] for the inverse

Here the characteristic frequenay, of the zero field expres- < . i | /
dielectric function. We find for the stopping power

sion is replaced byd;+ wZ)"% which reduces the stopping

power as a consequence of an increasing magnetic field 7226202 4

strength. In contrast to the result in Ret], our result does - “p & D de wfqmaxdq

not tend to a constant value for high-intensity magnetic uf T s=—w 0

fields. Equation(34) is confirmed by numerical calculations .

as discussed in Sec. V. We underline that the high velocity f -1

- . . - X | dz V1—-2219)8(sy—w)Im . (36
limit requires first to take the limiti—o and then to take 0 Jg(q Y)o(sy=w)ime (36

B—, and not vice versa. We stress that one obtains our

result, Eq.(34), by taking the limitu—o and then3— in Here we have introduced the dimensionless parameter
Eq. (29) of Nersisyan’s paper. This is a consequence of the={./w,, which measures the cyclotron frequency of the
use of the high-frequency approximation instead of the hightest particle in units of the plasma frequenoy. We per-
magnetic-field approximation for the dielectric function. form the w- and z-integration in order to find a numerical
Physically, one requires the argument in the logarithm to béractable expression for the stopping power. The result reads

essentially larger than unity. as
The experiments for the stopping power in a magnetized ) (5] [
plasma reported in Ref6] are the only experiments that we Zzezwp 23 S Umax )
n E + dq ‘]s
1/ Jo

are aware of. We have made a comparison of the experimen—S: u2
1

=0 =
tal data with our asymptotic formula. Unfortunately, the er- ° e

ror bars in the experimental data are so large that the influ- $242|s2y2— 32|
ence of the magnetic field is covered. We also could not find X (qv/|(s?y*—1)(s?>y*— B?)|/(BY)) ——
a comparison of the experimental data at zero magnetic field V1+B°—s%y
with the data at finite magnetic field in this paper. This (37)

would at least indicate the qualitative behavior. Our
asymptotic formula, Eq(34), predicts a reduction of the with the characteristic frequencies given by
stopping power of the magnetized plasma investigated in
Ref.[6] of about 30% in comparison with the nonmagnetized [ Uy,  p=1 [ B?ly*, B=1
plasma. In order to compare the experimental data with the- $1= ;o S= ;
oretical data, the experiments should be carried out at higher B*ly?, B<1

magnetic fields or the accuracy of the experiments should be

improved. Alternatively, the experimentalists may investi- s3=(1+ 1.

gate the case of perpendicular motion, in which one shoul
observe characteristic resonances in the stopping ptseer
the next section

1/y%,  pB<1

q‘he upper limits in the summation ovgrgiven by[s;] and
[s3], are determined by rounding; and s;, respectively,
downwards to the nearest integer, wHik ] is obtained by
roundings, upwards to the nearest integer. As it was shown

in the previous sectior,,x turns out to be given by,
In the case of perpendicular motion of the particle weZZm@(ﬁwp)_

distinguish the two different cases of finite and zero curva-  The stopping power as given in E(7) shows a diver-
ture. First we discuss the case in which the curvature of thgency at magnetic field strengths, for which the ratio (1
fast moving particle is neglected. The integral expression; g2)12/ js an integer value. Physically, this divergency is
(31) for f(B) cannot be simplified in the general case. Thereye to a resonant coupling of two oscillators with the fre-
fore one must numerically integrate H@1) in order to ob-  guencies ., i.e., the incident test particle, anda
tain the_stqpping power in the high velocity limit at arbitrary +w.)'2 i.e., the plasma waves, respectively. Since we have
magnetic field strengths. o neglected damping effects in our calcuation, these reso-

However, at strong magnetic field8{1), one can per- nances have an infinite amplitude. Our result is in contrast to
form the integration and finds from E33) by puttinga  that of Ref.[4], in which Fig. 3 indicates that the resonances
=ml2 occur ats?>y?’=1. Since these characteristic resonances

should be experimentally observable, we suggest to compare
< Zzezwg (| ( 2mu? ) 1 ) . the results with experiment.
2\ hwy(1+p3)14) 4 -39

3. Perpendicular motion &=/2)

In Fig. 1 we have plotted the stopping power given by Eq.

1
1+ InZ
(37) as a function of the inverse magnetic fieldylusing a
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' ' and references therginAdditionally, the low-velocity limit

of the stopping power is closely connected to transport prop-
9.7 I erties such as the conductivity. It may also be used to calcu-
late transport properties avoiding the solution of complicated
kinetic equations. In the dielectric formalism we can apply

77t 1 the low-frequency approximation for the dielectric function
[22] to obtain the low-velocity limit. We have for the real
r £ k part
oL LA qz
- Ree(q,0)=1+—, (39)
q
37
where(; is the inverse screening length. It is given by the
L first derivative of the particle densit20) with respect to the
7 , . . chemical potential, i.e.q§=47-re2(an/a,u). Within this ap-
7200 120.0 220.0 320.0 proximation Ree(g,0) shows an isotropic behavior. Anisot-
1 ropy effects will be apparent by considering higher order

terms. In general, it is appropriate to distinguish between a
degenerate and a nondegenerate plasma. For a nondegenerate
plasma one finds that the screening length is given by the
(i)nverse Debye radiukp with

FIG. 1. Dependence of the stopping powéwith S
=(Z%€?w3/uf)L] on the inverse magnetic field strengthyl/
=w, /(¢ in the high-velocity limit, assuming a finite curvature of
the test particle and introducing some arbitrary cutoff. We have als

included the asymptotic result for zero curvature, i8,=0 5 o
(dashed ling qs=kp=4mne’/kT. (39

proton as a test particle, which is passing an electron plasm&0r & degenerate plasma £ 0) one can approximate the
In order to obtain a finite value for the stopping power wescreening length by the static Thomas-Fermi wave vector,
have cut the stopping power at some arbitrary value at th#hich reads

resonance frequencies. One also observes that the oscilla-

tions take place around the zero curvature result. In order to , 1 V2 NF 1 40
find the height and the width of the plasma resonances one Qs lgag ™ 1o m

must use a theory which goes beyond the sharp resonance

approximation used in this work and which must include . . .

damping effects. One expects that the resonance peaks &t eretis the ratio of the Lan_dau energy and the Eerml

observable at strong magnetic fields only and are damped Of{lergy, given b3.t:ﬁf"°./ €r - N is the number of occgpled

at small magnetic fields approaching the zero curvature a -a”‘?'a“ levels, |.e.,_|t IS _the Iargest_number for which the

ymptotics. relatlc_)n Nefiw < e IS vz_ah_d. Expressions for the Thomas-_
Notice that one can obtain the zero curvature re$eis. Fermi wave vector at finite temperatures can be found in

(30) and (31)] from Eq. (37) by performing the following [30]. , ,

steps. First, at small values gfwe can transform the sum- We use an alternat'lve expression for the low frequency

mation into an integration according toX.f(sy) approximation of the imaginary pafsee[28], p. 38, Eq.

=fdsf(sy). In a second step we use the relation(lv‘l)] of the dielectric function, given by
fgmang,y(qu)%ln g/s, which is valid forqmax—° and y—0.

Using these relations one readily arrives at E3f). Im €(q,0—0)
47e?l m\¥hw, (= »  fo(w') (o+i= ds
B. Low-velocity limit T2 (2_> 2 wf er dw,—sj o
q ™ — o 0 # S—iw £7TI

In the low-velocity limit one assumes that the projectile 2
velocity is much smaller than the thermal velocity of the X e®'s Vs ex;{ _ % (h2s2+12)
plasma electrons. tanh# (w./2)s 8ms

We remind the reader that the dielectric formalism em- 2
ployed in this paper is only valid if the velocity of the ><exp< _ har coshﬁ(wCIZ)s—cos(wCIZ)r) (41)
projectile satisfies the inequality>Z€?/%. In order to ob- 2Mow, sinh7i(w/2)s

serve the low-velocity limit, the inequalityu<<ykT/m

should be satisfied. As a consequence of these inequaliti@sis closed form for Ine(q,w—0) is appropriate to calcu-
the temperature should be larger tHBrZx 10° K. Never-  late the stopping power in the limiting case of weak and
theless, even for a low-temperature plasma the stoppingtrong magnetic fields. At low velocities, we can further ap-
power obtained in the dielectric formalism is the basic quanproximate the energy loss function by (ml/e(q,0))=

tity for the calculation of the total stopping powesee[19], —Im e(q,w)/(Ree(q,0))2. With this, we can find analytical
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results for the nondegenerate and degenerate plasma. In bdii
cases we obtain the characteristic dependence of the stopping 12 4
power on the projectile velocity. This linear dependence of [ 9 J“d fl dsz dr q

the energy loss of a slow particle is a consequence of the 273 0 q 1 Jox (g2+y?)?
heavy particle limitM —oo, considered in this paper. It is a

general result and is not restricted to the RPA. The RPA Yexg — g2 Z_2+ 1-7 (coshx) — cogxr))
manifests itself only in the proportionality factor, which de- X q 8 4xsinh(x) shix X
pends on the chosen approximation. -
z°re\ | .
+?)h(zzzco§(a)+(1—z2)sm2(a)). (43

1. Nondegenerate plasma
Here we have introduced the two dimensionless parameters
y=ho,/kT and x=fwJ2kT. Additionally, the stopping
power will also depend on the direction of the propagation of
the particle. In the limix— 0, Eq.(43) reduces to the known
result[22]. The first correction term to the zero field result
may also be calculated analytically. This contribution will be
nCu, (42 in quadratic order with respect to the magnetic field, due to

the symmetry of the system. The strong field limit is ex-

tracted from Eq(43) by performing a saddle point approxi-

mation of ther-integration. All results are summarized in the
where the proportionality factor in its general form is given following equation:

At low velocities we find the following expression for the
stopping power

[ (1+y%8)eYBE,(y28)—1, x=0
2

X
[(1+Yy?/8) eyZ’SEl(yZ/s) —1]+ (1+sirP(a)){48+y*— (y®/8+y*— 2y2)ey2’8El(y2/8)}, x<1

C=1 240y?

3 3
Ecos’-(a)eyz/SEl(yZIS) it a~0; gsif(@x? if a>0, x>1.
\

For a nondegenerate plasma one usually deals with the sityatidn Using these results we establish now some equations for
the limit y—0, which read

( —In(y?/8)—C—1, x=0
X2
—In(y?/8)—=C—1+ — (1+sirf(a)), x<1
Sy

C=
3 ) 3. .
- Ecos’-(a)(CJrln(yZ/S)) if a~0; §S|n2(a)X2 if >0, x>1,
\
|
where C~0.5772 is Euler’s constant. At low velocities the 2 m2z2e*
stopping power of the plasma increases as a result of an S= 3——3Cdu. (44
increasing magnetic field strength, in contrast to the high- T h
velocity limit, where the energy loss decreases.
2. Degenerate plasma This regime is characterized by the ratio of the Landau en-

The case of a slow test particle passing a degeneraf@fdy @nd the Fermi energy, given by fiw./ ¢ . Again, for
plasma was first considered by Fermi and Tel&%]. They vanishing field we retrieve the known res{®2]. Similarly
derived a linear dependence of the stopping power on the teds described in the previous section one may obtain analyti-
particle velocity. This linear dependence also holds in thecal results in the limit of weak and strong magnetic fields.
case of a magnetized plasma The results read as

046401-8



ENERGY LOSS OF A CHARGED PARTICLE IN A ... PHYSICAL REVIEW B3 046401

¢

C In(1+ 1/X 112 1 3Xp—1 N 1 Ltsi? 21X(2)—2X0+1 .
a= It O T3, T 24 (13 xgs T 120 I o) s
3 cog(a) 3
—_ ~0- — +3ai .
12T fra=0; ot sifa if >0, t>1,

whereX,=q%/(4q2(B=0)) and Xz=0q2/(4q2). The Fermi velocities the stopping power is essentially given by the zero
wave vectorge is in implicit form given in Eq.(20). In the  field result, while at high velocities it approaches a different
strong field limit, t>1, one finds the simple relatioge ~ asympotic result.
:2772|28n for the Eermi wave vector anqumwﬁ/sz for The stopping power as a function of the inverse magnetic
the Thomas-Fermi wave vector. Again, we find an increasédield for various incident angles is plotted in Fig. 3. At high
of the energy loss as a consequence of an increasing mayelocities the stopping power is a monotonic function of the
netic field. incident angle, reaching the maximum value at perpendicular
motion and the minimum value at parallel motion of the test
particle with respect to the magnetic field. The high-velocity

V. NUMERICAL RESULTS AND DISCUSSION limits are found to be well-reproduced by E¢30) and(31).
We now proceed with presenting numerical results for the
stopping power neglecting the curvature of the test particle. VI. CONCLUSION

The numerical results were obtained from E2), using the ]

full dielectric function as discussed in Sec. Il. The energy In this paper we have concentrated on the quantum me-
loss of a particle moving parallel to the magnetic field as achanical treatment of the energy loss of a test particle in a
function of its velocity for various field strengths is shown in Plasma under the influence of a constant uniform magnetic
Fig. 2. We have also included the zero field result and thdield. We have considered the influence of the magnetic field
asymptotic result at high velociti¢&q. (30)] derived in Sec. 0N the plasmaplasma frequency, etcas well as on the
IV. The stopping power decreases with increasing magnetigiotion of the heavy particle. All results were obtained
field strength at high velocities. The low-velocity limit is Within the dielectric formalism, using a RPA dielectric func-
essentially given by the zero field result, sifce/2kT<1. tion. We hav.e derlved_ gnalyucal results in the I|m|t of h|gh-
One also observes a peak in the stopping power at around tﬁ@d Iow—partlcle. ve_locmes. It was found that at high vel_om-
thermal velocity of the electrons, which becomes narrower aties the magnetic field reduces the stopping power, while at
stronger magnetic fields. This is due to the fact that at low

10.0 .
................................................... 8.0
10.5 e 60 |
g =
- 4.0
55 |
——- Si 1321;' 20 | —— asympt. result (o = /4)
—-—B=10"T
---- asympt. result (B=10T)
0.0 L ‘
05 ) ) . A 0.6 2.6 4.6
05 1.5 25 3.5 4.5 u/uy,

vV,
! FIG. 3. The stopping powdwith S= (Z?e’w}/u?)L] as a func-

FIG. 2. Numerical results for the stopping power parallel to thetion of the velocity (i, is the thermal velocity of the plasma elec-
magnetic field [with S=(22e2w§/u§)L] versus velocity [u, trong for various angles between the magnetic field and the direc-
=(kT/m)*2 is the thermal velocity of the plasma electrprier tion of the incident particle. The electron density and temperature
various magnetic field strengths at a densitynef1?*m 2 anda aren=102°" m 2 and T=10° K, respectively. The magnetic field
temperature ofT=10° K. We have also included the zero field strengths iB=10* T. The solid line represents the asymptotic be-
results and the asymptotic behavi@3) for B=10 T. havior [Egs.(30) and(31)] for a= /4.
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low velocities the magnetic field increases the energy lossemonstrated that at high velocities the energy loss shows a
rate. Additionally, we have shown that at high velocities theresonant behavior a?y?=1+ 8°, wheres is an integer
energy loss of the test particle perpendicular to the field isvalue. This behavior has its origin in the coupling of two
larger than parallel to the field. In order to remove the veloc-oscillators with frequencie®. and (@2+ w2)Y2

ity constraints, we have also performed a numerical integra- Finally, we have found analytical results for the stopping
tion and have found that the asymptotic result at high velocipower in the low-velocity limit at both weak and strong mag-

ties is well-reproduced by the analytical formuiEggs. (30)

netic field, although neglecting the curvature of the test par-

and (31)]. The very good agreement of the numerical dataticle.

with our asymptotic formula at high velocities is another

strong argument that first taking the limit-o and theng

—oo is the right order to obtain the high-velocity stopping

power of a magnetized plasma.

ACKNOWLEDGMENTS
The authors thank I. M. Tkachenko and W. Ebeling for

Furthermore, we have analyzed the influence of the Larstimulating discussions. This work was supported by the
mor rotation of the test particle on the energy loss. We hav®eutsche Forschungsgemeinschaft.

[1] ILA. Akhiezer, Zh. Eksp. Teor. FiZ0, 954 (1961).

[2] N. Honda, O. Aoni, and T. Kihara, J. Phys. Soc. Jp8.256
(1963.

[3] O. Boine-Frankenheim and J. D’'Avanzo, Phys. PlasB&92
(1996.

[4] H.B. Nersisyan, Phys. Rev. &8, 3686(1998.

[14] 1.M. Tkachenko, J. Ortner, and V.M. Rylyuk, Phys. Re\bE
4846(1998.

[15] J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Me@8, 3
(1954.

[16] G. Zwicknagel, Ch. Toepffer, and P.-G. Reinhardt, Phys. Rep.
309, 177(1999.

[5] C. Cereceda, C. Deutsch, M. De Peretti, M. Sabatier, and H.B[17] G. Maynard and C. Deutsch, Phys. Rev28, 665(1982.

Nersisyan, Phys. Plasmd@s 2884 (2000.

[6] T. Winkler, K. Beckert, F. Bosch, H. Eickhoff, B. Franzke, F.
Nolden, H. Reich, B. Schlitt, and M. Steck, Nucl. Instrum.
Methods Phys. Res. 891, 12 (1997).

[7] F. Cornu, Europhys. Lett37, 591 (1997; Phys. Rev. E58,
5268(1998; 58, 5293(1998; 58, 5322(1998.

[8] D. Boose and A. Perez, Phys. Lett.284, 113(1997.

[9] M. Steinberg, J. Ortner, and W. Ebeling, Phys. Revs&
3806(1998; M. Steinberg, W. Ebeling, and J. Ortnésid. 61,
2290(2000.

[10] P. Skudlarski and G. Vignale, Phys. Rev4B, 8547(1993.

[11] M. Steinberg and J. Ortner, Phys. Rev.5B, 15460(1998;
ibid. 59, 12693(1999.

[12] J. Ortner, V.M. Rylyuk, and I.M. Tkachenko, Phys. Re\vb&
4937 (1994.

[13] V.M. Rylyuk, J. Ortner, and 1.M. Tkachenko, An. Fig4, 23
(1998.

[18] X.-Z. Yan, S. Takanaka, S. Mitake, and S. Ichimaru, Phys.
Rev. A32, 1785(1985.

[19] J. Ortner and I. M. Tkachenko, Phys. Rev(t& be published

[20] D.O. Gericke and M. Schlanges, Phys. Re\6@ 904 (1999.

[21] K. Morawetz and G. Rpke, Phys. Rev. B4, 4134(1996.

[22] N. Arista and W. Brandt, Phys. Rev. 23, 1898(1981).

[23] L.D. Landau and E.M. LifshitzQuantum Mechanic¢Perga-
mon, Oxford, 1958

[24] N.D. Mermin and E. Canel, Ann. Phy&\.Y.) 30, 249(1964).

[25] I.S. Gradstein and .M. Ryshikummen-, Produkt- und Inte-
graltafeln (Verlag der Wissenschaften, Berlin, 1957

[26] L.D. Landau and E.M. Lifshitz Statistical Physics, Part Il
(Pergamon, Oxford, 1986

[27] N. Rostoker, Phys. Fluid3, 922 (1960.

[28] N.J. Horing, Ann. Phys(N.Y.) 31, 1 (1965.

[29] N. Arista and W. Brandt, Phys. Rev. 29, 1471(1984.

[30] N.J. Horing, Ann. Phys(N.Y.) 54, 405(1969.

[31] E. Fermi and E. Teller, Phys. Rev2, 399 (1947).

046401-10



