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Energy loss of a charged particle in a magnetized quantum plasma
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This paper investigates the stopping power of a weakly coupled magnetized plasma. The effect of the
Larmor rotation of the heavy charged test particle is carefully analyzed. The dielectric formalism is employed
to obtain a general expression for the stopping power. A quantum mechanical form of the random-phase
approximation dielectric function is used so that an abitrary cutoff procedure is not required. Simple analytical
expressions for the stopping power have been found for the cases of high and low projectile velocity of the test
particle. The dependence of the stopping power on the angle of incidence is studied. A comparison with
numerical solutions is given. It is found that in general a magnetic field reduces the stopping power of the
plasma at high velocities, while it increases the stopping power at low velocities.
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I. INTRODUCTION

There have been a number of theoretical studies of the
beam stopping power of a plasma. Although some calc
tions of the stopping power in a magnetized plasma h
been presented in the early 1960s@1,2# the topic has only
recently become of general interest@3–5#. Partly, this is due
to the fact that strong magnetic fields are now experiment
available@6#. The experimental motivation for this investiga
tion also comes from the heavy-ion fusion research, in wh
the experiments are usually carried out in the presence
magnetic field. We also mention the importance of this to
in connection with the efforts to model the atmosphere
magnetized white dwarfs and magnetized neutron stars
the surface of which the magnetic field can be as high
105– 1014 kG.

Some progress has been recently made in the calcula
of the thermodynamic properties of quantized magneti
plasmas. The low-density magnetized plasma system
been tackled in the works of Cornu@7#, Boose and Perez@8#,
and of Steinberget al. @9#. The ground state energy of
degenerate strongly magnetized plasma has been inv
gated by Skudlarski and Vignale@10# and by Steinberg and
Ortner @11#. The plasma diagnostics on the basis of sch
uled experiments investigating the interaction of a laser o
particle beam with a magnetized plasma require the kno
edge of the dielectric function. The dielectric tensor of
magnetized coupled plasma has been studied in recent w
@12–14#.

In this paper we study the stopping power of a charg
projectile passing a magnetized plasma. In order to simp
the calculations we focus on the case of a weakly coup
magnetized plasma. A weakly coupled plasma is charac
ized by a small coupling parameterG, which is given by

G5
e2

4pe0kTd
, ~1!

whered5(3/4pn)1/3 is the mean distance between the p
ticles andT is the temperature of the plasma. Since the p
neering work of Lindhard@15#, the theory of the stopping
power of a~weakly or strongly coupled! plasma was consid
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ered within the framework of the dielectric formalism. It wa
found that the stopping power, i.e., the energy loss per
length of the projectile, and the dielectric function of th
plasmae(q,v) are related by the formula

S5
1

u S Ze

p D 2E dq
v

q2
n~v!ImS 2

1

e~q,v! D , ~2!

wheren(v)5(eb\v21)21 is the Bose factor,u is the veloc-
ity, and Ze is the charge of the test particle. Here the fr
quency\v5E(p8)2E(p) is given by the energy transfer o
the scattering of a particle from an initial state with ener
E(p) to a final state with energyE(p8), and a momentum
transfer of\q5p82p. It should be stressed that Eq.~2! is
valid for the case of weak coupling between the projec
and the plasma, given by the parameterh5Ze2/\ur!1
@16#, whereur is the electron-test particle relative velocit
Hence the dielectric formalism in linear response becom
exact in the limit of high test particle velocities. The aim
this work is to study the influence of an external magne
field on the energy loss rate of an ion moving through
quantum plasma. In doing so we analyze the effect of
Larmor rotation of the test particle on the stopping powe

Our calculations are based on the description of
plasma in the random-phase approximation~RPA! and are
therefore restricted to the weak-coupling limit of the inte
particle correlations@17#. In order to describe a strongl
coupled plasma system one must go beyond the RPA. T
may be achieved by explicitly taking into account static a
dynamic local-field corrections~LFC’s! @18# in the dielectric
function. Alternatively one may employ the method of fr
quency moments@19#. Other approaches also take into a
count a nonlinear coupling between the projectile and
plasma. They start from a quantum kinetic equation usin
T-matrix approximation for the correlation effects betwe
the test particle and the plasma@20,21#. All these approaches
~except the investigations based on the method of mom
@12,14#! are worked out only for nonmagnetized plasmas
is difficult to generalize them to the case of a magnetiz
plasma. Therefore they go beyond the scope of this wo
©2001 The American Physical Society01-1
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However, it has been realized that the RPA serves as
appropriate starting point for the calculation of the stopp
power.

The energy loss rate of a test particle in a magneti
plasma has been recently investigated in Refs.@3–5# ~and
references therein!. In their investigations the motion of th
test particle as well as the plasma were treated classic
Here, we use a quantum mechanical description~RPA! of the
beam-particle interaction rather than a classical dielec
tensor. Unlike its classical counterpart the RPA dielec
function guarantees the convergence of the integral for sh
range interactions and avoids some arbitrary cutoff pro
dure. Furthermore, we assume that the electrons give
main contribution to the stopping power.

In this paper we obtain numerical and analytical resu
for the energy loss of a fast moving particle in a magnetiz
plasma. In Sec. II we specify the parameters of the plas
under consideration and briefly outline the formulation of t
stopping power in the dielectric formalism. In Sec. III w
obtain expressions for the dielectric function of a magneti
plasma of all degeneracies. We also give simplified res
for the limiting case of a nondegenerate plasma. Analyt
results for the stopping power in the limit of high and lo
velocities are derived in Sec. IV. The Larmor rotation of t
test particle is taken into account. Finally, in Sec. V, w
present numerical results for the energy loss rate for var
parameters of the plasma and compare these results to
asymptotic results derived in Sec. IV.

II. BASIC THEORETICAL TREATMENT

The plasma under consideration is subject to an exte
constant magnetic field, which is considered to be paralle
the z-direction B5(0,0,B). It may be specified by its tem
peratureT and by the plasma frequencyvp5A4pne2/m,
wheren is the electron density. The influence of the ions
the projectile energy loss will be neglected throughout t
paper. The motion of the electrons are characterized by
cyclotron frequencyvc5eB/mc or the magnetic lengthl B

5A\c/eB, wherem is the electron mass.
We consider a test particle of massM and chargeZe that

moves with velocity componentsu5(uz ,u') in a magne-
tized plasma. The incident angle of the motion of the parti
with respect to the magnetic field is denoted bya, so that
uz5u cosa andu'5u sina. We assume a mass of the pa
ticle M@m such that a classical description of its motion
applicable. The particle moves on circular orbits perpendi
lar to the field with a frequencyVc5ZeB/Mc, while the
motion parallel to the field is not influenced by the field.

Let us now derive a general expression for the stopp
power of a particle in a magnetized plasma. In doing so,
essentially follow the method that was developed in R
@22#. We first consider the case where the incident part
must be described quantum mechanically, and from that
extract an equation for the stopping power in which the m
tion of the test particle can be described classically, i.e.
the limit \→0. In quantum mechanics the motion perpe
dicular to the magnetic field is quantized with the ener
eigenvalues given byE'5\Vc(n11/2) @23#. The full en-
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ergy spectrum of the test particle can then be written as

En,kz ,s5\VcS n1
11s

2 D1
\2kz

2

2M
. ~3!

The corresponding eigenstates are labeled byN
5(n,ky ,kz ,s), wheres is the spin variable. In a first ap
proximation, if the interaction of the test particle and t
plasma is sufficiently weak, the inelastic scattering rate o
particle from the initial stateN5(n,ky ,kz ,s) to the final
state N85(n8,ky8 ,kz8 ,s8) can be calculated from Fermi’
golden rule. We find for the scattering rate

R~N→N8,v!5E dq

~2p!3 S 4pZe2

q2 D 2
2p

\2
S~q,v!

3u^N8ueiqruN&u2u\v5En8,kz8 ,s82En,kz ,s
,

~4!

where we have introduced the dynamical charge-cha
structure factorS(q,v) of the plasma. The Fourier transform
of the wave functions are given by@24#

^N8uei qruN&5Fnn8S q'
2 l B

2

2 D dk
y8 ,ky1qy

dk
z8 ,kz1qz

ds,s8 , ~5!

where

Fnn8~x!5F n!

n8!
G 1/2

x(n82n)/2 exp~2x/2!Ln
n82n~x! ~n,n8!,

Fnn8~x!5~21!n2n8Fn8n~x! ~n.n8!, ~6!

and Ln
n8(x) are the generalized Laguerre polynomial@25#.

The classical motion of the test particle allows us to consi
the matrix elements in the limit\→0, with the result~see
also @24#!

Fnn8S q'
2 l B

2

2 D→Jn82n~q'a!, ~7!

with a5u' /Vc andJn(x) being the Bessel function of orde
n. Using this relation and Eq.~4! it follows that

R~N→N8,v!5E dq

~2p!3 S 4pZe2

q2 D 2
2p

\2
S~q,v!

3Jn82n
2

~q'a!dk
y8 ,ky1qy

dk
z8 ,kz1qz

ds,s8

3d~En,kz ,s2En8,k
z8 ,s81\v!. ~8!

The dynamical structure factorS(q,v) can be obtained from
the dielectric functione(q,v) of the plasma, by using the
fluctuation dissipation theorem@26# one finds

S~q,v!5
\q2

4p2e2
n~v!ImS 2

1

e~q,v! D . ~9!
1-2
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ENERGY LOSS OF A CHARGED PARTICLE IN A . . . PHYSICAL REVIEW E63 046401
The energy transfer\v may be determined from

\v5\pzuz1
\2pz

2

2M
1s\Vc , ~10!

with s5n82n andpz5kz82kz . Since we assume a classic
motion of the test particle, we can neglect the second term
this equation. The energy loss rate is given by a sum ove
final states:

dE

dt
5(

N8
\vR~N→N8,v!. ~11!

In the next step we split the integral intov.0 andv,0
parts and make use of the relationn(v)1n(2v)521.
With that we obtain for the stopping power in a magne
field

S52
1

u

dE

dt

5
2Z2e2

pu (
s52`

` E
0

`

dq'q'Js
2~q'a!E

2`

`

dqz

qzuz1sVc

q'
2 1qz

2

3ImS 2
1

e~qz ,q' ,qzuz1sVc!
DQ~qzuz1sVc!, ~12!

where Q(v) is the well-known step function. Essentiall
this equation describes the energy loss of a classical par
moving in a magnetic field and passing a magnetized qu
tum plasma. Alternatively, one can derive Eq.~12! from the
linearized Vlasov equation, where the self-consistent elec
static potential is determined by Poisson’s equation. Si
this is a classical derivation, the plasma dielectric function
Eq. ~12! is given by its classical representation. This progr
was first carried out by Rostoker@27#. Additionally, one
must introduce a momentum cutoff to avoid the divergen
of the integral at small distances. In contrast to that,
description of the projectile plasma interaction used in t
work leads to a quantum expression for the dielectric fu
tion and avoids the cutoff procedure at small distanc
which is inherent in the classical treatment.

III. DIELECTRIC FUNCTION

In this section we obtain expressions for the dielec
function in random-phase approximation, including bo
thermal and quantum effects. We first introduce the polar
tion function P(q,v) which is connected to the dielectri
function by the following expression:

e~q,v!511
4pe2

q2
P~q,v!. ~13!

The polarization function describes the response of
plasma to a test charge. In general, the response of the
tem is calculated within a perturbation theory. The low
order contribution is the RPA. In this approximation the p
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larization function is determined solely by a collisionles
i.e., noninteracting, Fermi system in a magnetic field, an
can be written in the form

P~q,v!5(
s

E dkz

~2p l B!2

3 (
n,n8

(
ky ,ky8

f ~En,kz ,s!2 f ~En8,kz1qz ,s!

\v1En,kz ,s2En8,kz1qz ,s1 i01

3u^n8,ky8 ,kz1qz ,suei qrun,ky ,kz ,s&u2. ~14!

Here the summation is carried out over all Landau lev
n,n8 and spin variabless. The arguments of the Fermi-Dira
function f (En,kz ,s) are given by the eigenvalues of the fre
particles:

En,kz ,s5\vcS n1
11s

2 D1
\2kz

2

2m
. ~15!

The polarization function in a magnetic field in RPA, i.e
Eq. ~14!, has been extensively studied by Horing@28# within
the Green’s function method. He used a closed form of
polarization function, avoiding unwieldly summations ov
Landau eigenstates, and derived analytical results for dif
ent limiting cases. Since we are interested in the general
of arbitrary degeneracy, our starting point is the single p
ticle wave function of a particle moving in a magnetic fiel
The results for the matrix elements have already been g
in the previous section@Eq. ~5!#.

In the next step we separateP(q,v) into real and imagi-
nary parts. This may be accomplished by using the iden

1

v2v01 i01
5P

1

v2v0
2 ipd~v2v0!. ~16!

We first find an expression for the imaginary part of t
response function. Thed-function allows us to perform the
kz-integration in Eq.~14!, and we readily obtain

Im P~q,v!5
1

4p l B
2

m

\2uqzu

3(
s

(
n,n8

@ f ~En,m/\qz(v1vc(n2n8)2\q
z
2/2m),s!

2 f ~En8,m/\qz(v1vc(n2n8)1\q
z
2/2m),s!#

3Fnn8
2 S q'

2 l B
2

2 D . ~17!

This result is valid at arbitrary degeneracy of the plasma
may serve as a starting point for numerical analysis. In
next section we will find a simplified expression for the d
electric function in the limit of small degeneracy. Furthe
more, we present an expression for the real part of the
sponse function, which is obtained by using the Krame
Kronig relation@26#. The result reads as
1-3
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ReP~q,v!5
1

4p l B
2

m

\2uqzu

3(
s

(
n,n8

@g~En,m/\qz(v1vc(n2n8)2\q
z
2/2m),s!

2g~En8,m/\qz(v1vc(n2n8)1\q
z
2/2m),s!#

3Fnn8
2 S q'

2 l B
2

2 D , ~18!

where the functiong(En,x(v),s) is defined by

g~En,x(v),s!5PE
2`

`

dv8
f ~En,x(v8),s!

v2v8
~19!

and the integral is to be understood in the sense of a Cau
principal value. It is useful to establish the relation betwe
the chemical potentialm5mN1N\vc and the particle den
sity n, given by

n5
2x

L3

1

Ap
(
N50

`

8 F21/2~bmN!, ~20!

where the sum in Eq.~20! extends over all Landau levelsN
and the standard Fermi integralsFn(a) are defined by

Fn~a!5E
0

`

dx
xn

ex2a11
. ~21!

In the next section we give simplified results for the diele
tric funciton of a nondegenerate plasma.

High-temperature, low-density plasmas. We can now
tain expressions for the real and imaginary part of the die
tric function of a high-temperature and low-density plasm
These plasmas are characterized by the rela
nL3 tanh(x)/(2x)5em/kT!1, where L5h/A2pmkT, x
5\vc/2kT, andm is the chemical potential for the plasm
electrons. In this case the Fermi-Dirac distribution can
replaced by the Boltzmann distribution. Notice that a ma
netic field increases the domain of classical behavior (em/kT

!1) towards higher densities.
Our starting point for ImP(q,v) is Eq. ~17!. The series

(n8 may be summed by using the representation of the m
fied Bessel functionI N(x) in terms of the generalized La
guerre polynomials. After some lengthy calculations one
rives at the following expression for the imaginary part
the dielectric function@28#:

Im e~q,v!5
mvp

2

\q2uqzu
S 2pm

kT D 1/2

(
n52`

`

3expF2S m~v2nvc!
2

2qz
2

1
\2qz

2

8m D Y kTG
3sinhS \v

2kTDe2q'
2 l B

2 /2 cothxI nS q'
2 l B

2

2 sinhxD . ~22!
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As expected, the zero field result@29# for Im e(q,v) is re-
covered along the magnetic field (q'50), where the sum in
Eq. ~22! is reduced to the termn50.

Following the same steps described above we have
computed the real part ofe(q,v), with the result

Ree~q,v!511
mvp

2

\q2uqzu
S m

2kTD 1/2

(
n52`

`

„e2nxF~s1!

2enxF~s2!…expS 2
q'

2 l B
2

2
cothxD I nS q'

2 l B
2

2 sinhxD ,

~23!

with s65Amb/2qz
2(v2nvc6\qz

2/2m) and F(s) is the
plasma dispersion function given by

F~s!5
1

Ap
PE

2`

`

dz
e2z2

s2z
5Ape2s2

Erfi~s!. ~24!

Again, we observe the zero field results@29# for Ree(q,v)
in the limit q'→0.

Equations.~17!, ~18!, ~22!, and~23! form the basis for the
numerical analysis of the energy loss rate. These results
presented in Sec. V and are compared with the analyt
results derived in the next section.

IV. ASYMPTOTIC RESULTS

We now focus our attention on the derivation of analytic
results for the stopping power in limiting cases. We study
stopping power in dependence on the velocity of the char
paricle at both low velocities,v→0, and high velocities,v
→`. The influence of the Larmor rotation on the stoppi
power is discussed.

A. High-velocity limit

Let us consider the situation when the projectile veloc
is much larger than the thermal velocity of the plasma el
trons. In this high-velocity limit the damping effects can b
neglected and consequently the imaginary part of the inve
dielectric function can be described by a sharp loss of ene
at the plasma excitation frequencies6vq . These frequen-
cies should be chosen in such a way that the correspon
dielectric tensor satisfies the frequency sum rules. In orde
simplify the calculation we will divide theq-integration into
a region of small momentum transfer, i.e.,q,qmax, and
large momentum transferq.qmax and will use different ap-
proximations for the energy loss function in each regio
Clearly, the final result is independent of the particu
choice ofqmax. For large distances, i.e.,q,qmax, we can use
the cold plasma approximation for the inverse dielect
function, which is given by the expression
1-4
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ImS 2
1

e~q,v! D5
p

2
~v22b2!S v2

v2
2 2v1

2
d~v2v2!

2
v1

v2
2 2v1

2
d~v2v1!D , ~25!

with the plasma frequenciesv2 andv1 given by

v65~11b2!/26A~11b2!2/42b2 cos2 u, ~26!

whereu denotes the angle between the wave vector and
magnetic field. One can easily check that the inverse die
tric function defined in Eq.~25! satisfies the frequency sum
rules. Notice, that all frequencies are measured in units of
plasma frequencyvp . We have also introduced a measure
the electron cyclotron frequency, given byb5vc /vp . The
approximation~25! describes a sharp loss of energy at t
plasma excitation frequenciesv6 . At small distances, i.e.
q.qmax, we can use

ImS 2
1

e~q,v! D5
p

2

1

v
@d~v2vq!1d~v1vq!#, ~27!

wherevq is obtained from the fourth frequency moment a
reads asvq

25(\/2mvp)2q4 @13#. These characteristic fre
quencies may be calculated from the dielectric function
high frequencies. Having introduced these general exp
sions we may now proceed to analyze the slowing down
test particle passing a plasma for different incident anglea
and physical situations.

1. Arbitrary direction andVcÄ0

In a first approach we neglect the curvature of the mot
of the incident particle, but consider its motion in arbitra
direction. Let us briefly outline the steps leading to the fin
result. Since we are interested in the high-velocity limit,
can start with the high-velocity approximations~25! and~27!
for the energy loss function. Considering first the large m
mentum part (q.qmax), we insert the high velocity approxi
mation in Eq.~2! and carry out all integrations. Additionally
we neglect all terms that vanish asu→` and obtain the
following expression:

S5
Z2e2vp

2

u2
lnS 2mu

\qmax
D . ~28!

Performing the same procedure for the small momen
part, a straightforward calculation will lead to

S5
Z2e2vp

2

u2
XlnS uqmax

vp
D2 f ~b!C, ~29!

where again terms that vanish asu→` are neglected. Com
bining both expressions the lnqmax terms cancel and we find
the following leading term for the stopping power at hig
velocities:
04640
e
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m

S5
Z2e2vp

2

u2
XlnS 2mu2

\vp
D2 f ~b!C, ~30!

where the constantf (b) is given by

f ~b!5
1

2pE0

v1
dv

vub22vu ln v

Auv~v2v1!~v2v2!~v2v3!u

1
1

2pEv2

v3
dv

vub22vu ln v

Auv~v2v1!~v2v2!~v2v3!u
,

~31!

with the characteristic frequencies determined by

v
2
15~11b2!/27A~11b2!2/42b2 sin2 a,v3511b2.

~32!

This result is the generalization of Bethe’s expression for
stopping power in the high-velocity limit and was first d
rived by Akhiezer@1#. The constantf (b) vanishes in the
limit b→0, from which one retrieves the zero field resu
Akhiezer @1# also derived an analytical expression forf (b)
at arbitrary incident angles and at strong magnetic fieldsb
@1, which reads

f ~b!5
11cos2 a

4
ln~11b2!1

sin2 a

4 S 11 ln
sin2 a

4 D .

~33!

Two general results can be extracted out of this expres
concerning the influence of the magnetic field on the hig
velocity stopping power for the zero curvature motion of t
test particle. First, the stopping power of a plasma is redu
as a consequence of an increasing magnetic field stren
Furthermore, one must be careful by applying the hig
velocity approximation in the infinite magnetic field cas
The argument of the logarithmic term in Eq.~30! may be
approximated by 2mu2/\(vp

21vc
2)1/2, which must be a large

quantity in order to make this derivation in logarithmic a
curacy valid. Clearly, this contradicts the assumption of
infinite magnetic field. The second point is that the hig
velocity stopping power is a monotonic function of the inc
dent angle of the test particle, having its maximum at p
pendicular motion, i.e.,a5p/2, and its minimum at paralle
motion, i.e.,a50. The limiting cases of parallel and perpe
dicular motion and the influence of the Larmor rotation
the test particle will be discussed in the next section.

2. Parallel motion (aÄ0)

If the incident particle moves parallel to the magne
field, the stopping power will be independent of the curv
ture of the motion of the test particle, i.e., ofVc . Under
these conditions only the terms50 in Eq.~12! contributes to
the energy loss. Inserting Eqs.~25! and ~27! into Eq. ~12!
and carrying out all integrations one arrives at an express
which is obtained from the calculation of the previous se
1-5
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tion by settinga50 in Eqs.~30! and~31!. The result, which
is valid at arbitrary magnetic field, reads as

S5
Z2e2vp

2

uz
2

lnS 2muz
2

\vpA11b2D . ~34!

Here the characteristic frequencyvp of the zero field expres
sion is replaced by (vp

21vc
2)1/2, which reduces the stoppin

power as a consequence of an increasing magnetic
strength. In contrast to the result in Ref.@4#, our result does
not tend to a constant value for high-intensity magne
fields. Equation~34! is confirmed by numerical calculation
as discussed in Sec. V. We underline that the high velo
limit requires first to take the limitu→` and then to take
b→`, and not vice versa. We stress that one obtains
result, Eq.~34!, by taking the limitu→` and thenb→` in
Eq. ~29! of Nersisyan’s paper. This is a consequence of
use of the high-frequency approximation instead of the hi
magnetic-field approximation for the dielectric functio
Physically, one requires the argument in the logarithm to
essentially larger than unity.

The experiments for the stopping power in a magneti
plasma reported in Ref.@6# are the only experiments that w
are aware of. We have made a comparison of the experim
tal data with our asymptotic formula. Unfortunately, the e
ror bars in the experimental data are so large that the in
ence of the magnetic field is covered. We also could not fi
a comparison of the experimental data at zero magnetic
with the data at finite magnetic field in this paper. Th
would at least indicate the qualitative behavior. O
asymptotic formula, Eq.~34!, predicts a reduction of the
stopping power of the magnetized plasma investigated
Ref. @6# of about 30% in comparison with the nonmagnetiz
plasma. In order to compare the experimental data with
oretical data, the experiments should be carried out at hig
magnetic fields or the accuracy of the experiments should
improved. Alternatively, the experimentalists may inves
gate the case of perpendicular motion, in which one sho
observe characteristic resonances in the stopping power~see
the next section!.

3. Perpendicular motion (aÄpÕ2)

In the case of perpendicular motion of the particle
distinguish the two different cases of finite and zero cur
ture. First we discuss the case in which the curvature of
fast moving particle is neglected. The integral express
~31! for f (b) cannot be simplified in the general case. The
fore one must numerically integrate Eq.~31! in order to ob-
tain the stopping power in the high velocity limit at arbitra
magnetic field strengths.

However, at strong magnetic fields (b!1), one can per-
form the integration and finds from Eq.~33! by putting a
5p/2

S5
Z2e2vp

2

u'
2

XlnS 2mu'
2

\vp~11b2!1/4D 2
1

4 S 11 ln
1

4D C. ~35!
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Again, we mention that the energy loss of a particle mov
perpendicular to the field is larger than for a particle movi
parallel to the field.

The second case deals with the more general situa
where the Larmor rotation of the fast moving particle
taken into account. Since we are interested in the asymp
limit of high velocities it is sufficient to start with the
d-function approximation@Eqs.~25! and~27!# for the inverse
dielectric function. We find for the stopping power

S5
Z2e2vp

2

u'
2

4

p (
s52`

` E dv vE
0

qmax
dq

3E
0

1

dz Js
2~qA12z2/g!d~sg2v!Im e21. ~36!

Here we have introduced the dimensionless parameteg
5Vc /vp , which measures the cyclotron frequency of t
test particle in units of the plasma frequencyvp . We per-
form the v- and z-integration in order to find a numerica
tractable expression for the stopping power. The result re
as

S5
Z2e2vp

2

u'
2

2

b S (
s50

[s1]

1 (
s5[s2]

[s3] D E
0

qmax
dq Js

2

3„qAu~s2g221!~s2g22b2!u/~bg!…
s2g2us2g22b2u

A11b22s2g2
,

~37!

with the characteristic frequencies given by

s15H 1/g2, b>1

b2/g2, b,1
; s25H b2/g2, b>1

1/g2, b,1
;

s35~11b2!/g2.

The upper limits in the summation overs, given by@s1# and
@s3#, are determined by roundings1 and s3, respectively,
downwards to the nearest integer, while@s2# is obtained by
roundings2 upwards to the nearest integer. As it was sho
in the previous section,qmax turns out to be given byqmax

52mu'
2/(\vp).

The stopping power as given in Eq.~37! shows a diver-
gency at magnetic field strengths, for which the ratio
1b2)1/2/g is an integer value. Physically, this divergency
due to a resonant coupling of two oscillators with the fr
quencies Vc , i.e., the incident test particle, and (vp
1vc)

1/2, i.e., the plasma waves, respectively. Since we h
neglected damping effects in our calcuation, these re
nances have an infinite amplitude. Our result is in contras
that of Ref.@4#, in which Fig. 3 indicates that the resonanc
occur at s2g251. Since these characteristic resonanc
should be experimentally observable, we suggest to com
the results with experiment.

In Fig. 1 we have plotted the stopping power given by E
~37! as a function of the inverse magnetic field 1/g using a
1-6
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proton as a test particle, which is passing an electron plas
In order to obtain a finite value for the stopping power w
have cut the stopping power at some arbitrary value at
resonance frequencies. One also observes that the os
tions take place around the zero curvature result. In orde
find the height and the width of the plasma resonances
must use a theory which goes beyond the sharp reson
approximation used in this work and which must inclu
damping effects. One expects that the resonance peak
observable at strong magnetic fields only and are damped
at small magnetic fields approaching the zero curvature
ymptotics.

Notice that one can obtain the zero curvature results@Eqs.
~30! and ~31!# from Eq. ~37! by performing the following
steps. First, at small values ofg we can transform the sum
mation into an integration according to(sf (sg)
5*ds f(sg). In a second step we use the relati
*0

qmaxJs/g
2 (q/g)'ln q/s, which is valid forqmax→` andg→0.

Using these relations one readily arrives at Eq.~30!.

B. Low-velocity limit

In the low-velocity limit one assumes that the project
velocity is much smaller than the thermal velocity of t
plasma electrons.

We remind the reader that the dielectric formalism e
ployed in this paper is only valid if the velocityu of the
projectile satisfies the inequalityu@Ze2/\. In order to ob-
serve the low-velocity limit, the inequalityu!AkT/m
should be satisfied. As a consequence of these inequa
the temperature should be larger thanT@Z3105 K. Never-
theless, even for a low-temperature plasma the stopp
power obtained in the dielectric formalism is the basic qu
tity for the calculation of the total stopping power~see@19#,

FIG. 1. Dependence of the stopping power@with S
5(Z2e2vp

2/u'
2 )L# on the inverse magnetic field strength 1g

5vp /Vc in the high-velocity limit, assuming a finite curvature o
the test particle and introducing some arbitrary cutoff. We have
included the asymptotic result for zero curvature, i.e.,Vc50
~dashed line!.
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and references therein!. Additionally, the low-velocity limit
of the stopping power is closely connected to transport pr
erties such as the conductivity. It may also be used to ca
late transport properties avoiding the solution of complica
kinetic equations. In the dielectric formalism we can app
the low-frequency approximation for the dielectric functio
@22# to obtain the low-velocity limit. We have for the rea
part

Ree~q,0!511
qs

2

q2
, ~38!

whereqs is the inverse screening length. It is given by t
first derivative of the particle density~20! with respect to the
chemical potential, i.e.,qs

254pe2(]n/]m). Within this ap-
proximation Ree(q,0) shows an isotropic behavior. Aniso
ropy effects will be apparent by considering higher ord
terms. In general, it is appropriate to distinguish betwee
degenerate and a nondegenerate plasma. For a nondege
plasma one finds that the screening length is given by
inverse Debye radiuskD with

qs
25kD

2 54pne2/kT. ~39!

For a degenerate plasma (T50) one can approximate th
screening length by the static Thomas-Fermi wave vec
which reads

qs
25

1

l BaB

A2

p (
N50

NF 1

A1/t2N
, ~40!

where t is the ratio of the Landau energy and the Fer
energy, given byt5\vc /eF . NF is the number of occupied
Landau levels, i.e., it is the largest number for which t
relation NF\vc,eF is valid. Expressions for the Thomas
Fermi wave vector at finite temperatures can be found
@30#.

We use an alternative expression for the low frequen
approximation of the imaginary part@see @28#, p. 38, Eq.
~IV.1!# of the dielectric function, given by

Im e~q,v→0!

5
4pe2

q2 S m

2p D 3/2\vc

2
vE

2`

`

drE
0

`

dv8
f 0~v8!

\3 E
d2 i`

d1 i` ds

2p i

3ev8s
As

tanh\~vc/2!s
expS 2

qz
2

8ms
~\2s21r 2! D

3expS 2
\q'

2

2mvc

cosh\~vc/2!s2cos~vc/2!r

sinh \~vc/2!s D . ~41!

This closed form for Ime(q,v→0) is appropriate to calcu
late the stopping power in the limiting case of weak a
strong magnetic fields. At low velocities, we can further a
proximate the energy loss function by Im„21/e(q,0)…5
2Im e(q,v)/„Ree(q,0)…2. With this, we can find analytica

o

1-7
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results for the nondegenerate and degenerate plasma. In
cases we obtain the characteristic dependence of the stop
power on the projectile velocity. This linear dependence
the energy loss of a slow particle is a consequence of
heavy particle limitM→`, considered in this paper. It is
general result and is not restricted to the RPA. The R
manifests itself only in the proportionality factor, which d
pends on the chosen approximation.

1. Nondegenerate plasma

At low velocities we find the following expression for th
stopping power

S5
2

3

~2pm!1/2

~kT!3/2
Z2e4nCu, ~42!

where the proportionality factor in its general form is give
e
f
gh

ra

te
th

04640
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A

by

C5S 9

2p3D 1/2E
0

`

dqE
21

1

dzE
2`

`

dr
q4

~q21y2!2

3expF2q2S z2

8
1

12z2

4x sinh~x!
„cosh~x!2cos~xr !…

1
z2r 2

8 D Gp4 „2z2 cos2~a!1~12z2!sin2~a!…. ~43!

Here we have introduced the two dimensionless parame
y5\vp /kT and x5\vc/2kT. Additionally, the stopping
power will also depend on the direction of the propagation
the particle. In the limitx→0, Eq.~43! reduces to the known
result @22#. The first correction term to the zero field resu
may also be calculated analytically. This contribution will b
in quadratic order with respect to the magnetic field, due
the symmetry of the system. The strong field limit is e
tracted from Eq.~43! by performing a saddle point approx
mation of ther-integration. All results are summarized in th
following equation:
s for
C55
~11y2/8!ey2/8E1~y2/8!21, x50

@~11y2/8!ey2/8E1~y2/8!21#1
x2

240y2
„11sin2~a!…$481y42~y6/81y422y2!ey2/8E1~y2/8!%, x,1

3

2
cos2~a!ey2/8E1~y2/8! if a'0;

3

8
sin2~a!x2 if a.0, x.1.

For a nondegenerate plasma one usually deals with the situationy!1. Using these results we establish now some equation
the limit y→0, which read

C55
2 ln~y2/8!2C21, x50

2 ln~y2/8!2C211
x2

5y2
„11sin2~a!…, x,1

2
3

2
cos2~a!„C1 ln~y2/8!… if a'0;

3

8
sin2~a!x2 if a.0, x.1,
en-

lyti-
s.
whereC'0.5772 is Euler’s constant. At low velocities th
stopping power of the plasma increases as a result o
increasing magnetic field strength, in contrast to the hi
velocity limit, where the energy loss decreases.

2. Degenerate plasma

The case of a slow test particle passing a degene
plasma was first considered by Fermi and Teller@31#. They
derived a linear dependence of the stopping power on the
particle velocity. This linear dependence also holds in
case of a magnetized plasma
an
-

te

st
e

S5
2

3p

m2Z2e4

\3
Cdu. ~44!

This regime is characterized by the ratio of the Landau
ergy and the Fermi energy, given byt5\vc /eF . Again, for
vanishing field we retrieve the known result@22#. Similarly
as described in the previous section one may obtain ana
cal results in the limit of weak and strong magnetic field
The results read as
1-8
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Cd55
ln~111/X0!2

1

11X0
, t50

ln~111/X0!2
1

11X0
1t2F 1

24

3X021

~11X0!3
1

1

120
„11sin2~a!…

21X0
222X011

~11X0!4 G , t,1

t
3

4

cos2~a!

11XB
if a'0;

3

64
t3sin2 a if a.0, t.1,
as
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whereX05qs
2/„4qF

2(B50)… and XB5qs
2/(4qF

2). The Fermi
wave vectorqF is in implicit form given in Eq.~20!. In the
strong field limit, t.1, one finds the simple relationqF

52p2l B
2n for the Fermi wave vector andqs

25mvp
2/2eF for

the Thomas-Fermi wave vector. Again, we find an incre
of the energy loss as a consequence of an increasing m
netic field.

V. NUMERICAL RESULTS AND DISCUSSION

We now proceed with presenting numerical results for
stopping power neglecting the curvature of the test parti
The numerical results were obtained from Eq.~2!, using the
full dielectric function as discussed in Sec. II. The ener
loss of a particle moving parallel to the magnetic field a
function of its velocity for various field strengths is shown
Fig. 2. We have also included the zero field result and
asymptotic result at high velocities@Eq. ~30!# derived in Sec.
IV. The stopping power decreases with increasing magn
field strength at high velocities. The low-velocity limit i
essentially given by the zero field result, since\vc/2kT!1.
One also observes a peak in the stopping power at aroun
thermal velocity of the electrons, which becomes narrowe
stronger magnetic fields. This is due to the fact that at l

FIG. 2. Numerical results for the stopping power parallel to
magnetic field @with S5(Z2e2vp

2/uz
2)L# versus velocity @uth

5(kT/m)1/2 is the thermal velocity of the plasma electrons# for
various magnetic field strengths at a density ofn51020 m23 and a
temperature ofT5105 K. We have also included the zero fiel
results and the asymptotic behavior~33! for B510 T.
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velocities the stopping power is essentially given by the z
field result, while at high velocities it approaches a differe
asympotic result.

The stopping power as a function of the inverse magn
field for various incident angles is plotted in Fig. 3. At hig
velocities the stopping power is a monotonic function of t
incident angle, reaching the maximum value at perpendic
motion and the minimum value at parallel motion of the te
particle with respect to the magnetic field. The high-veloc
limits are found to be well-reproduced by Eqs.~30! and~31!.

VI. CONCLUSION

In this paper we have concentrated on the quantum
chanical treatment of the energy loss of a test particle i
plasma under the influence of a constant uniform magn
field. We have considered the influence of the magnetic fi
on the plasma~plasma frequency, etc.! as well as on the
motion of the heavy particle. All results were obtaine
within the dielectric formalism, using a RPA dielectric fun
tion. We have derived analytical results in the limit of hig
and low-particle velocities. It was found that at high veloc
ties the magnetic field reduces the stopping power, while

FIG. 3. The stopping power@with S5(Z2e2vp
2/u2)L# as a func-

tion of the velocity (uth is the thermal velocity of the plasma elec
trons! for various angles between the magnetic field and the dir
tion of the incident particle. The electron density and temperat
are n51020 m23 and T5105 K, respectively. The magnetic field
strengths isB5104 T. The solid line represents the asymptotic b
havior @Eqs.~30! and ~31!# for a5p/4.
1-9
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low velocities the magnetic field increases the energy l
rate. Additionally, we have shown that at high velocities t
energy loss of the test particle perpendicular to the field
larger than parallel to the field. In order to remove the vel
ity constraints, we have also performed a numerical integ
tion and have found that the asymptotic result at high velo
ties is well-reproduced by the analytical formula@Eqs. ~30!
and ~31!#. The very good agreement of the numerical d
with our asymptotic formula at high velocities is anoth
strong argument that first taking the limitu→` and thenb
→` is the right order to obtain the high-velocity stoppin
power of a magnetized plasma.

Furthermore, we have analyzed the influence of the L
mor rotation of the test particle on the energy loss. We h
.B

.
.

04640
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is
-
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demonstrated that at high velocities the energy loss show
resonant behavior ats2g2511b2, where s is an integer
value. This behavior has its origin in the coupling of tw
oscillators with frequenciesVc and (vp

21vc
2)1/2.

Finally, we have found analytical results for the stoppi
power in the low-velocity limit at both weak and strong ma
netic field, although neglecting the curvature of the test p
ticle.

ACKNOWLEDGMENTS

The authors thank I. M. Tkachenko and W. Ebeling f
stimulating discussions. This work was supported by
Deutsche Forschungsgemeinschaft.
ep.

ys.

-

@1# I.A. Akhiezer, Zh. Eksp. Teor. Fiz.40, 954 ~1961!.
@2# N. Honda, O. Aoni, and T. Kihara, J. Phys. Soc. Jpn.18, 256

~1963!.
@3# O. Boine-Frankenheim and J. D’Avanzo, Phys. Plasmas3, 792

~1996!.
@4# H.B. Nersisyan, Phys. Rev. E58, 3686~1998!.
@5# C. Cereceda, C. Deutsch, M. De Peretti, M. Sabatier, and H

Nersisyan, Phys. Plasmas7, 2884~2000!.
@6# T. Winkler, K. Beckert, F. Bosch, H. Eickhoff, B. Franzke, F

Nolden, H. Reich, B. Schlitt, and M. Steck, Nucl. Instrum
Methods Phys. Res. A391, 12 ~1997!.

@7# F. Cornu, Europhys. Lett.37, 591 ~1997!; Phys. Rev. E58,
5268 ~1998!; 58, 5293~1998!; 58, 5322~1998!.

@8# D. Boose and A. Perez, Phys. Lett. A234, 113 ~1997!.
@9# M. Steinberg, J. Ortner, and W. Ebeling, Phys. Rev. E58,

3806~1998!; M. Steinberg, W. Ebeling, and J. Ortner,ibid. 61,
2290 ~2000!.

@10# P. Skudlarski and G. Vignale, Phys. Rev. B48, 8547~1993!.
@11# M. Steinberg and J. Ortner, Phys. Rev. B58, 15460~1998!;

ibid. 59, 12693~1999!.
@12# J. Ortner, V.M. Rylyuk, and I.M. Tkachenko, Phys. Rev. E50,

4937 ~1994!.
@13# V.M. Rylyuk, J. Ortner, and I.M. Tkachenko, An. Fis.94, 23

~1998!.
.

@14# I.M. Tkachenko, J. Ortner, and V.M. Rylyuk, Phys. Rev. E57,
4846 ~1998!.

@15# J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.28, 3
~1954!.

@16# G. Zwicknagel, Ch. Toepffer, and P.-G. Reinhardt, Phys. R
309, 177 ~1999!.

@17# G. Maynard and C. Deutsch, Phys. Rev. A26, 665 ~1982!.
@18# X.-Z. Yan, S. Takanaka, S. Mitake, and S. Ichimaru, Ph

Rev. A 32, 1785~1985!.
@19# J. Ortner and I. M. Tkachenko, Phys. Rev. E~to be published!.
@20# D.O. Gericke and M. Schlanges, Phys. Rev. E60, 904 ~1999!.
@21# K. Morawetz and G. Ro¨pke, Phys. Rev. E54, 4134~1996!.
@22# N. Arista and W. Brandt, Phys. Rev. A23, 1898~1981!.
@23# L.D. Landau and E.M. Lifshitz,Quantum Mechanics~Perga-

mon, Oxford, 1958!.
@24# N.D. Mermin and E. Canel, Ann. Phys.~N.Y.! 30, 249~1964!.
@25# I.S. Gradstein and I.M. Ryshik,Summen-, Produkt- und Inte

graltafeln ~Verlag der Wissenschaften, Berlin, 1957!.
@26# L.D. Landau and E.M. Lifshitz,Statistical Physics, Part II

~Pergamon, Oxford, 1986!.
@27# N. Rostoker, Phys. Fluids3, 922 ~1960!.
@28# N.J. Horing, Ann. Phys.~N.Y.! 31, 1 ~1965!.
@29# N. Arista and W. Brandt, Phys. Rev. A29, 1471~1984!.
@30# N.J. Horing, Ann. Phys.~N.Y.! 54, 405 ~1969!.
@31# E. Fermi and E. Teller, Phys. Rev.72, 399 ~1947!.
1-10


